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Il problema

Supponiamo di volere confrontare 2 stringhe di caratteri per stabilire quanto differiscano l’una dall’altra. Innazitutto
dovremmo definire il concetto di differenza tra stringhe. Potremmo dire che due stringhe differiscono tanto più l’una
dall’altra quanto più contengono caratteri diversi. Ci accorgiamo subito che questa definizione di differenza è molto
approssimativa, in quanto, secondo questo criterio, le stringhe IRTO e OTRI, che contengono gli stessi caratteri,
dovrebbero non differe tra loro.
Notiamo subito che è importante considerare non solo i caratteri che compaiono nelle due stringhe, ma anche
l’ordine con cui questi compaiono.
La massima sottosequenza comune rappresenta invece un valido criterio per stabilire quanto due o più sequenze
di caratteri differiscano tra loro, un criterio che tiene conto sia di quali caratteri compaiono nelle due stringhe ma
anche dell’ordine con cui questi compaiono.

Definizioni

Sottosequenza. Una stringa w è sottosequenza di un’altra stringa x se w è ottenibile da x cancellando zero o più
caratteri di x . Più formalmente, la stringa w1w2...wi è sottosequenza di un’altra x1x2...xm se esiste una sequenza
strettamente crescente di interi (k1, k2, ..., ki ) con 0 < ki ≤ m tale che wi = xki .

Massima sottosequenza comune. Una stringa w si definisce massima sottosequenza comune tra N stringhe
S1, S2, ..., Sn se è sottosequenza di tutte le stringhe S1, S2, ..., Sn ed è la massima (quella che contiene il maggior
numero di caratteri) tra le tutte le stringhe che hanno questa proprietà.
La massima sottosequenza comune che indicheremo con LCS(S1, S2, ..., Sn)può non essere unica, mentre sarà
ovviamente unica la lunghezza della massima sottosequenza comune che denotiamo lcs(S1, S2, ..., Sn).

Ad sempio:
LCS(acido,tartarico) = aio

ma anche:
LCS(acido,tartarico) = aco.

Comunque sia:
lcs(acido,tartarico) = 3

Algoritmi per il calcolo della massima sottosequenza comune.

Ci occupiamo, per prima cosa di risolvere un’istanza semplificata del problema calcolando la sola lunghezza della
massima sottosequenza comune tra 2 stringhe; una volta trovata la soluzione a questa istanza ristretta prenderemo
in considerazione il caso generale (ovvero trovare quale sia effettivamente questa sottosequenza e considerare il
problema riferito a un numero arbitrario di stringhe).

Algoritmo ricorsivo. Il primo metodo che si presenta alla mente consiste senza dubbio in un approccio ricorsivo.
Supponiamo che le due stringhe x e y lunghe rispettivamente n e m caratteri di cui si deve calcolare la lcs terminino
con lo stesso carattere. In questo caso di sicuro LCS(x, y) conterrà questo carattere e lcs(x, y) sarà maggiore o
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uguale 1 e il problema si ridurrebbe al calcolo di lcs(x ′, y′) dove x ′ è x privato del suo ultimo carattere e lo stesso
dicasi per y′ rispetto a y.
Se invece gli ultimi due caratteri di x e y differiscono, allora LCS(x, y) non potrà contenerli entrambi (e forse
potrebbe non contenerne nessuno dei due). lcs(x, y) sarà quindi uguale al maggiore tra lcs(x ′, y) e lcs(x, y′) dove
x ′ e y′ hanno lo stesso significato attribuito loro precedentemente.
Siamo quindi facilmente giunti a una formulazione ricorsiva dell’algoritmo risolutivo per il problema:

f u n c t i o n l c s _ r e c ( var x : s t r i n g ; var y : s t r i n g ; i , j : i n t e g e r ) : i n t e g e r ;
begin

i f ( i <=0) or ( j <=0) then l c s _ r e c :=0
e l s e

i f x [ i ]= y [ j ] then l c s _ r e c :=1+ l c s _ r e c ( x , y , i −1, j −1)
e l s e l c s _ r e c := max ( l c s _ r e c ( x , y , i −1, j ) , l c s _ r e c ( x , y , i , j −1))

end ; { l c s _ r e c }

Notiamo che se le stringhe sono si lunghezze confrontabile(n ≈ m) e non hanno caratteri in comune allora
l’algoritmo ricorsivo esegue approssimativamente 2n passi.

Algoritmo di programmazione dinamica. È altresi facile notare che vi sono solo n ·m possibili chiamate ricor-
sive diverse (in quanto gli indici i, j sono i soli veri dati di input della funzione lsc_rec(). Questo significa che le
soluzioni a una grande moltitudine di sottoproblemi vengono ricalcolate più e più volte, inutilmente.
Per ovviare a questo problema sarebbe sufficiente memorizzare le soluzione dei sottoproblemi già risolti per poi
richiamarle in un secondo tempo, senza ricalcolarle ogni volta. Ed è proprio in questa strategia che consiste l’algorit-
mo di programmazione dinamica che prendiamo in considerazione. L’algoritmo, per trovare lcs(x1x2...xi , y1 y2...yj ),
deve necessariamente conoscere:

- lcs(x1x2...xi−1, y1 y2...yj−1)

- lcs(x1x2...xi , y1 y2...yj−1)

- lcs(x1x2...xi−1, y1 y2...yj ).

Ovviamente:

lcs(ε, yj ) = 0 per tutti i j, lcs(xi , ε) = 0 per tutti gli i (1)

dove ε identifica la stringa vuota.
Inoltre come per l’algoritmo ricorsivo:

lcs(x1...xi , y1...yj ) =





1+ lcs(x1...xi−1, y1...yj−1) se xi = yj

max(lcs(x1...xi , y1...yj−1),

lcs(x1...xi−1, y1...yj )) se xi 6= yj

(2)

Basta quindi immagazzinare l’informazione necessaria in una matrice M = array[0..n][0..m] che in posizione i, j
contenga lcs(i, j).
Dalla (1) e dalla (2) si ricava immediatamente l’algoritmo seguente:

f u n c t i o n l c s _ d i n ( var x : s t r i n g ; var y : s t r i n g ) : i n t e g e r ;
var i , j : i n t e g e r ;
begin

f o r i :=0 to l e n g t h ( x ) do M[ i ] [ 0 ] : = 0 ;
f o r i :=0 to l e n g t h ( y ) do M[ 0 ] [ i ] : = 0 ;
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f o r i :=1 to l e n g t h ( x ) do
f o r j :=1 to l e n g t h ( y ) do

i f x [ i ]= y [ j ] then M[ i ] [ j ] : = 1 +M[ i −1][ j −1]
e l s e M[ i ] [ j ] : = max (M[ i −1][ j ] ,M[ i ] [ j −1 ] ) ;

l c s _ d i n :=M[ l e n g t h ( x ) ] [ l e n g t h ( y ) ] ;
end ; { l c s _ d i n }

Alla fine del ciclo M[n][m] contiene lcs(x, y) È evidente che l’algoritmo di programmazione dinamica risolve il
problema della massima sottosequenza comune tra 2 stringhe lunghe rispettivamente n e m caratteri utilizzando un
tempo e una quantità di memoria entrambi proporzionali a mn.

Esempio. Vediamo ora come lavora l’algoritmo di programmazione dinamica per il calcolo di lcs(dijkstra,knuth).
Per prima cosa vengono poste uguali a zero tutte le celle della prima riga e della prima colonna (riga 0, colonna 0).
Si scandiscono poi tutte le celle della matrice, nel nostro caso seguendo l’ordine da sinistra verso destra e dall’alto
verso il basso e, ad ogni cella, si applica la (2).

0-0-0-0 1-1 2-2-2
k n u t h

0-0-0-0 1-1-1-1-1
0-0-0-0 1-1-1-1-1

0-0-0-0 1-1 2-2-2

0-0-0-0 1-1-1-1-1

d  i  j  k  s  t  r  a
0-0-0-0-0-0-0-0-0

Figura 1: La matrice M .

I trattini in figura 1 indicano da dove proviene il valore di ogni cella, ovvero, se esiste un trattino che va dalla cella
i alla cella j , questo significa che il valore della cella j è stato calcolato a partire da quello della cella i (dove, per
calcolato, si intende o incrementato di 1 o lasciato invariato).
In particolare le caselle segnate con un rettangolo indicano dove si è avuto un aumento della lcs tra le strin-
ghe parziali fino a quel momento analizzate. Alla fine, l’ultima casella in basso a destra contiene il valore di
lcs(dijkstra,knuth)

Ricostruzione della soluzione. Se siamo interessati a conoscere, oltre alla lunghezza della massima sottosequen-
za comune, anche una di queste (ricordiamo che la LCS(x, y) può non essere unica) è necessario scandire la matrice
M = array[0..n][0.m] a ritroso, a partire dalla posizione (n,m) nel seguente modo:

f u n c t i o n LCS( var x : s t r i n g ; var y : s t r i n g ; M: m a t r i x ) : s t r i n g
var tmp : s t r i n g ;

i , j : i n t e g e r ;
begin

tmp := ’ ’ ;
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i = l e n g t h ( x ) ; j := l e n g t h ( y ) ;
whi le ( i >0) and ( j >0) do

i f x [ i ]= y [ j ] then
begin

tmp := x [ i ]+ tmp ;
dec ( i ) ; dec ( j ) ;

end
e l s e

i f M[ i −1][ j ] >M[ i ] [ j −1] then dec ( i )
e l s e dec ( j ) ;

LCS=tmp ;
end ;

Generalizzazione.

Generalizziamo ora l’algoritmo di programmazione dinamica per il calcolo della massima sottosequenza comune
tra 2 stringhe a un numero indefinito, diciamo N , stringhe S1, S2, ..., SN

L’algoritmo è del tutto simile al precendente. Per conoscere, ad esempio, lcs(x1...xi , y1...yj , z1...zk) sarà sufficiente
conoscere

- lcs(x1...xi−1, y1...yj , z1...zk)

- lcs(x1...xi , y1...yj−1, z1...zk)

- lcs(x1...xi , y1...yj , z1...zk−1)

- lcs(x1...xi−1, y1...yj−1, z1...zk)

- lcs(x1...xi , y1...yj−1, z1...zk−1)

- lcs(x1...xi−1, y1...yj−1, z1...zk−1)

Servirà quindi una matrice M = array[0..m][0..n][0..p] dove p è la lunghezza della stringa z per mantenere le
informazioni necessarie, lo stesso dicasi se il numero delle stringhe delle quali calcolare la massima sottosequenza
comune è maggiore di 3. L’algoritmo, nel caso di tre stringhe, è il seguente:

f u n c t i o n l c s _ d i n ( var x : s t r i n g ; var y : s t r i n g ; var z : s t r i n g ) : i n t e g e r ;
var i , j , k : i n t e g e r ;
begin

f o r i :=0 to l e n g t h ( x ) do M[ i ] [ 0 ] [ 0 ] : = 0 ;
f o r i :=0 to l e n g t h ( y ) do M[ 0 ] [ i ] [ 0 ] : = 0 ;
f o r i :=0 to l e n g t h ( z ) do M[ 0 ] [ 0 ] [ i ] : = 0 ;

f o r i :=1 to l e n g t h ( x ) do
f o r j :=1 to l e n g t h ( y ) do

f o r k := 1 to l e n g t h ( z ) do
i f ( x [ i ]= y [ j ] ) and ( x [ i ]= z [ k ] ) then M[ i ] [ j ] [ k ] : = 1 +M[ i −1][ j −1][k−1]
e l s e M[ i ] [ j ] [ k ] : = max (M[ i −1][ j ] [ k ] ,M[ i ] [ j −1][ k ] ,M[ i ] [ j ] [ k−1] ,

M[ i −1][ j −1][ k ] ,M[ i ] [ j −1][k−1] ,M[ i −1][ j ] [ k−1 ] ) ;
l c s _ d i n :=M[ l e n g t h ( x ) ] [ l e n g t h ( y ) ] [ l e n g t h ( z ) ] ;

end ; { l c s _ d i n }

Alla fine del ciclo M[n][m][p] contiene lcs(x, y, z)
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Ulteriori ottimizzazioni. Esistono metodi per diminuire ulteriormente la complessità spaziale dell’algoritmo di
programmazione dinamica per il calcolo dell lcs. La trattazione di questo argomento esula dallo scopo di questa
dispensa tuttavia, chi è interessato potrà trovare nella bibliografia ampi spunti di ricerca e approfondimento.
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